### Number Analogy Fractional

Number Analogy - Concepts
Class - 8th ISO Subjects

Concept Explanation

## Number Analogy Fractional

In these type of questions also, identify the relationship between two(or more) elements and apply this relation to find the missing term. In this concept, numbers can be in fractional form or whole numbers. Some examples are :

Fraction : A number contains numerator and denominator.

Types of fraction :

a) Proper Fraction :  Numerator is smaller than the denominator.

For example, $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, etc.$

b) Improper Fraction : Numerator is greater than or equal to the denominator.

For example, $\frac{5}{2}, \frac{7}{4}, \frac{11}{6}, etc.$

c) Mixed Fraction : It consists of whole number and a proper fraction.

For example,    $2\frac{3}{4}, 5\frac{5}{6},8\frac{1}{5},etc.$

Example 1: Find the missing term.

$\dpi{120} \fn_jvn \large \frac{2}{5}:29::\frac{3}{5}:?$

a) 34          b) 45        c) 54           d)35

Solution: To identify the relation, try to find sum of squares of numerator and denominator. $\dpi{120} \fn_jvn \large 2^2+5^2=4+25=29$. Similarly use this relation for other fraction also: $\dpi{120} \fn_jvn \large 3^2+5^2=9+25=34$

Example 2: Find the missing term.

$\dpi{120} \fn_jvn \large \frac{5}{6}:30::\frac{4}{5}:?$

a) 30          b) 50        c) 10        d)20

Solution: To identify the relation, try to find product of numerator and denominator. 5 X 6 = 30, Similarly use this relation for other fraction also: 4 X 5 = 20. So, correct option is D i.e. 20.

Example 3: Find the missing term.

$\dpi{120} \fn_jvn \large \frac{9}{6}:3::\frac{7}{3}:?$

a) 3          b) 4         c) 5           d)2

Solution: To identify the relation, try to find difference of numerator and denominator. 9 - 6 = 3. Similarly use this relation for other fraction also: 7 - 3 = 4. So, option B is correct i.e. 4

Example 4: Find the missing term.

$\dpi{120} \fn_jvn \large \frac{2}{3}:125::\frac{3}{5}:?$

a) 512         b) 130        c) 729          d)343

Solution: To identify the relation, try to find cube of sum of numerator and denominator. $\dpi{120} \fn_jvn \large ((2+3)^3)=5^3=125$. Similarly, use this relation for other fraction also: $\dpi{120} \fn_jvn \large ((3+5)^3)=8^3=512$

Example 5 : Find the missing number.

$\dpi{80} \large \frac{1}{5} : 124 :: \frac{5}{11} : ?$

(a) 1200  (b) 1202  (c)  1206   (d) 1210

Solution : In the given number analogy, second term is the difference between the cubes of numerator and denominator.

$\dpi{80} \large 5^{3} - 1^{3} = 125 -1 = 124$

$\dpi{80} \large 11^{3} - 5^{3} = 1331 -125 = 1206$

Sample Questions
(More Questions for each concept available in Login)
Question : 1
 Find the missing term. $\frac{16}{17}: 272 :: \frac{17}{18} : ?$ A.  300 B.  304 C.  306 D.  308 Right Option : C View Explanation
Question : 2
 Find the missing  term 3/5 : 7/9 : : 11/13. A.  20/21 B.  15/19 C.  15/17 D.  60/70 Right Option : C View Explanation
Question : 3
 Find the missing number. $\frac{5}{7} : 1728 :: \frac{7}{9} : ?$ A.  4000 B.  4096 C.  5000 D.  5625 Right Option : B View Explanation

Video Link - Have a look !!!

Language - Hindi/English

Related Videos
Language - Hindi/English
Language - Hindi/English
Language - Hindi/English

## Students / Parents Reviews [10]

##### Our Contact
Mrs. Anu Sethi,
Near Govt. PG College,
Ambala Cantt.-133 001 (Haryana) India.

VIEW LOCATION MAP
M - +91-9416541198, +91-9416225678
abhyasonline.info@gmail.com