Series Connection of Resistors


 
 
Concept Explanation
 

Series Connection of Resistors

Combination of Resistance:

In many applications to get a required value of resistance two or more resistances are combined. Two or more resistance can be combined in more than one way.

1. Series Combination

2. Parallel Combination

If, in an electrical circuit, two or more resistances connected between two points are replaced by a single resistance such that there is no change in the current of the circuit and in the potential difference between those two points, then the single resistance is called the 'equivalent resistance. When the resistance of a circuit is to be increased, they are combined in series and when heavy current is to be passed they are combined in parallel so as to decrease the total resistance.

Series Combination of Resistance:

In this combination, the resistances are joined end to end. Thus the second end of each resistance is joined to the first end of the next resistance, and so on. The first end of the first resistance and the second end of the last resistance are connected to the cell. In this combination, the same current flows in all the resistances but the potential differences between their ends are different according to their resistances.

In this combination more than one resistance is connected one after the other as shown. In this type of circuit:

1.  Equal current flows through each resistance.

2.  Total voltage drop across the combination is equal to the sum of voltage drop across each resistance.

3.  Voltage drop each resistance can be calculated using Ohm’s Law and is proportional to the value of resistance.

4.  Equivalent resistance is thus greater than resistance of any resistor in the circuit.. This is also known as maximum effective resistance

In the circuit given we have three resistance R1, R2 and R3 are connected in series and V1, V2 and V3 are the potential drop across each resistance respectively. If I is the current flowing through the circuit when a cell with potential difference V is applied across them

V_1= I R_1              .......(1)

V_2= I R_2              .......(2)

V_3= I R_3              .......(3)

Now, let us assume a resistance R_s is the equivalent resistance which will have the same potential difference as the combination.

V= I R              .......(4)

 Equivalent resistance can be calculated by using the fact that total potential drop in the circuit is equal to the sum of potential drop across each resistance

V= V_1+V_2+V_3              .......(5)

Substituting the value from Equations 1, 2, 3, 4 in 5 we get

I R_s =I R_1 + I R_2 + I R_3

I R_s =I (R_1 + R_2 + R_3)

R_s = R_1 + R_2 + R_3

The sum of individual potential drop across the resistors connected in series is equal to the total potential difference across the series can be derived as follows

Potential difference across point A and B  R_1 ;i.e.; V_1 = V_A - V_B

Potential difference across point B and C  R_2 ;i.e.; V_2 = V_B - V_C,

Potential difference across Point C and D R_3 ;i.e.; V_3 = V_C - V_D

On adding the potentials across R_1, ;R_2 ;and ;R_3

V_1 + V_2 + V_3 = (V_A - V_B) + (V_B -V_C) + (V_C- V_D)=V_A-V_D

 i.e. equal to the potential difference between points A and D = V

Disadvantages of Series Combination:

(i) In series combination, if any of the components fail to work, the circuit will break and then none of the components will work.

(ii) It is not possible to connect a bulb and a heater in series because they need different values of current to operate properly. Hence, to overcome this problem we do not use series circuit.

Illustration: Five resistance are connected as shown in the figure below. Calculate current through the circuit, also calculate the potential drop across resistance R5

Solution: In the figure we are given five resistances which are connected in series. To calculate current in the circuit we have to calculate the equivalent resistance.

The equivalent resistance is the sum of individual resistance

R_s = R_1 + R_2 + R_3+R_4+R_5

R_s = 20 + 20 + 20+20+10= 90; Omega

Potential Difference V = 9 V

Current can be calculated using Ohm's Law

V= IR

I =frac{V}{R_s} =frac{9}{90} =0.1 ;A

As we know in series combination same current flows through all resistance.So 0.1 A current flows through the resistance R5.

Hence potential drop across R5 can be calculated using Ohm's Law

V_5= I; R_5= 0.1 times 10 = 1; V

The current through the circuit is 0.1.A and the potential drop across R5 1 V.

Sample Questions
(More Questions for each concept available in Login)
Question : 1

Three bulbs each of resistance of 3 ohm are connected in series are connected to two fans of resistance 5 ohms each.The effective resistance will be

Right Option : D
View Explanation
Explanation
Question : 2

A person connects four frac{1}{4}Omega resistance in series accross a potential of 5V, the current flowing is ______________

Right Option : C
View Explanation
Explanation
Question : 3

Three batteries are connected as shown in the figure. If each cell has an e.m.f. of 3 V. The the total emf in the circuit is ________V.

Right Option : B
View Explanation
Explanation
 
Video Link - Have a look !!!
 
Language - English
 
Chapters
Pre-Historic Period
Indus Valley Civilization
Vedic Civilization
Religious Reform Movement
The Early Kingdoms
The Mauryan Empire
Post Mauryan Period
The Age Of The Guptas
Post Gupta Era
Age of Rajput
Khilji Dynasty
Slave Dynasty
Tughlaq and Sayyid Dynasty
Vijaynagar Empire And Bahamani Kingdom
Mughal Empire And Beyond
Lodhi Dynasty
Cholas, Chalukyas and Pallavas
Arab Invasions
Bhakti and Sufi Movement
Rise of Sikhs, Jats and Marathas
Administrative Structure of Delhi Sultanate
Architecture During Medivial India
Advent Of The Europeans
Post Mughal Period
Rise of New States in 18th Century
Growth of British Paramountacy
Socio Religious Reforms
Constitutional Development of India
Indian Struggle Against British Rule
The Revolt Of 1857
Education Under British Rule
Role of Press in Freedom Struggle
First Phase of National Movement
Second Phase of National Movement
Third Phase of National Movement
Constitutional Development in India
Constituent Assembly
Union And Its Territory
Structure of Indian Constitution
Fundamental Rights and Duties
The Union Executive
The Union Legislature
Constitutional Amendments and Provisions
Judiciary In India
Emergency Provisions
Center - State Relations
The State Executive
The State Legislature
Election Commission Of India
Constitutional Organisation
Non-Constitutional Organisation
Local Self Goverment
India - Size And Location
Geological History Of India
The Physical Features Of India
Climate Of India
Soils In India
Natural Vegetation
Windlife Conservation In India
Drainage System of India
Irrigation System Of India
Agriculture In India
Livestock And Fisheries In India
Minerals And Energy Resources In India
Means Of Transport In India
Major Industries In India
Tribes of India
Census of India 2011
Music
Dance
Theatre
Pantings
Art, Architecture & Culture of India
Bio-Diversity
Earth And Its Structure
Land Rock And Soil
Atmosphere, Climate And Weather
Oceanography
Human And Regional Geography
Economic Growth And Development
Sectors Of Indian Economy
Economic Planning Of India
Fiscal And Monetary Policy In India
Infrastructure In India
Effects Of British Rule On Indian Economy
National Income
Banking System In India
Poverty And Unemployment
Inflation And Trade Cycles
Major Institutions
Environmental Studies
Tissues In Organism
Cytology
Classifucation Of Plants
Structural Composition Of Plants
Nutrition In Plants, Harmones And Plant Disease
Ecosystem
Classification In Animals
Nutrition In Animals
Human Digestive System
Human Respiratory System
Human Skeleton System
Human Excretory System
Human Nervous System
Human Circulatory System
Human Endocrine System
Human Reproductive System
Genetics
Human Diseases
States Of Matter
Metals And Non Metals
Acid Bases And Salts
Element Compounds And Mixture
Physical And Chemical Change
Carbon And Its Compounds
Periodic Classification
Fuel, Combustion And Flame
Environmental Chemistry
Rest And Motion
Work Power And Energy
Gravitation
Pressure And Its Effects
Simple Harmonic Motion
Sound and Waves
Heat And Temperature
Light - Reflection
Electricity And Magnetism
Modern Physics
Science And Technology
Force And The Laws Of Motion
Light - Refraction
Dispersion And Human Eye
Magnetic Effect Of Electric Current
Atom And Molecule
Chemistry In Everyday Life
Units And Dimensions
Content / Category
Class / Course
 
 
Related Videos
Language - Hindi/English
Language - English
Language - English

Language - English
Language - Hindi/English

Language - English
Language - Hindi/English


Students / Parents Reviews [10]