Trigonometric ratios for 90 degrees


 
 
Concept Explanation
 

Trigonometric ratios for 90 degrees

Trigonometric Ratios for 90 Degrees and 0 Degrees: In a triangle it is not possible to draw an angle as 0 degree. Moreover there can not be two angle which are 90 degree in a triangle. In at triangle ABC right angled at B. If we say that angle is nearly 0degree then angle A will be near to 90 degree as sum of angle of a triangle is 180 degree.

angle A + angle B+ angle C = 180 ^0                 [ Angle Sum Property]

And if angle C= 0^0

then angle A+ 90 ^0 + 0^0 = 180 ^0 Rightarrow angle A= 90^0

 As angle A = angle B     [ Each 90^0]

Therefore BC = AC    [ Sides opposite equal angles are equal]

and side AB = 0

For angle C = 0^0

Thus,  Adjacent = BC, Opposite = AB  and hypotenuse =AC.

.... (More Text Available, Login?)
Sample Questions
(More Questions for each concept available in Login)
Question : 1

Simplify the given expression :

frac{5;sin^2;90^0+cos^2;90^0-4;cosec^2;90^0}{2;sin;90^0cosec;90+cos;90^0}

 

Right Option : B
View Explanation
Explanation
Question : 2

Evaluate the following expression:

  frac {sin: 30^o}{cos: 45^o}+frac {cos: 45^o}{sec: 60^o}-frac {sin: 60^o}{sin: 45^o}

Right Option : D
View Explanation
Explanation
Question : 3

Evaluate :

frac {sin: 90^o}{cosec: 90^o}+frac {cos: 90^o+sin;90^0}{sin: 90^o}-frac {cos: 90^o}{cot: 90^o}

Right Option : A
View Explanation
Explanation
 
 
Related Videos
Language - English



Students / Parents Reviews [10]